Preliminary communication

Reactions of copper acetylides. Crystal structure of $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{C} \equiv \mathrm{CPh}) \mathrm{CuCl}\right]_{2}$

M.I. BRUCE, R. CLARK, JUDITH HOWARD and P. WOODWARD
Department of Inorganic Chemistry, The University, Bristol BS8 1 TS (Great Britain)

(Received July 18th, 1972)

Reactions between substituted copper acetylides and suitable transition metal complexes are a fruitful source of unisual types of polynuclear hetero-atom complexes. A recent example is $\left[\mathrm{IrCu}_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{4}\right]_{2}{ }^{1}$, and many other related clusters have been found.

The reaction between $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}$ and $\mathrm{CuC}_{2} \mathrm{Ph}$ affords a yellow-orange, beautifully crystalline air-stable $1 / 1$ adduct (I), m.p. $160-162^{\circ}$ (dec.), in 30% yield. The IR spectrum (in CHCl_{3}) shows two $\mathcal{V}(\mathrm{CO})$ bands at 2052 and $2002 \mathrm{~cm}^{-1}$. The proton NMR spectrum consists of a sharp singlet at $\tau 4.7\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and a broad signal at $\tau 2.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$. The mass spectrum shows only peaks found in the spectrum of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{C} \equiv \mathrm{CPh}$, although heating in vacuo results only in decomposition to ferrocene and 1,4 -diphenylbutadiyne. The complex is soluble in polar solvents, and osmometric molecular weight determinations indicate that dissociation, probably of a dimeric molecule (see below), occurs.

Crystals of $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClCuFeO}_{2}$ are monoclinic, $a=12.57, b=18.27, c=7.15 \AA, \beta=$ 115.3°; space group $P 2_{1} / a$ with $Z=4$. The intensities of 1838 non-zero reflections were measured on a Supper-Pace 0.01° incrementing auto-difiractometer, using equi-inclination geometry, ω-scan, and Mo- K_{α} radiation. The structure was solved by conventional heavyatom methods and has been refined to $R=0.095$.

Complex (I) is dimeric, with molecular formula $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{Fe}_{2} \mathrm{O}_{4}$, and comprises two asymmetric units related by a centre of inversion (see Fig. 1). The $\mathrm{Cu}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{2}}$ ring is planar, with angles at Cu and at $\mathrm{Cl} 94.6(2)$ and $85.4(2)^{\circ}$, respectively. The CuCl distances are all $2.267(5) \AA$, and the $\mathrm{Cu}-\mathrm{Cu}$ distance is $3.075(4) \AA$. Each copper is symmetrically bonded to the C_{2} unit of the phenylethynyl group, the CuC_{2} moieties being coplanar with the $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ ring. The $\mathrm{Cu}-\mathrm{Cu}^{\prime}$ vector bisects the two multiple bonds; the distances $\mathrm{Cu}-\mathrm{C}(8)$ and $\mathrm{Cu}-\mathrm{C}(9)$ are equal, at $1.99(2) \&$. The $\mathrm{C}(8)-\mathrm{C}(9)$ bond length is $1.27(2) \AA$. Atom $C(9)$ is σ-bonded to a phenyl group $C(91)-C(96)$ [1.39(2) $\AA]$, and $C(8)$ is σ-bonded to the iron atom of a $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}$ unit $[1.89(2) \AA]$; both bonds are

Fig. 1. Molecular structure of $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{C}_{2} \mathrm{Ph}\right) \mathrm{CuCl}\right]_{2}(\mathrm{I})$.
coplanar with the whole central portion of the molecule. The $\mathrm{C}(91)-\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{Fe}$ sequence is non-linear, with angles at $\mathbf{C}(9)$ and $\mathrm{C}(8)$ both $162(2)^{\circ}$. The geometry of the ($\pi-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Fe}(\mathrm{CO})_{2}$ group closely resembles that found in many other compounds containing this group.

The structure of complex (I) is related to that of the long-known polymeric $\left[\mathrm{CuC}_{2} \mathrm{Ph}\right]_{n}{ }^{2}$, and more closely to that of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right)^{3}$. In the latter case, the carbon-carbon multiple bond is much closer to π-ethylenic ($\mathrm{C}-\mathrm{C}, 1.32 ; \mathrm{Pt}-\mathrm{C}, 2.03 \AA$). Our complex is isoelectronic with the platinum derivative, but the acetylene is unusual in bearing a σ-bonded transition metal. The $\mathrm{Fe}-\mathrm{C}(8)$ bond, while shorter than expected for an $\mathrm{Fe}-\mathrm{C}(s p)$ single bond ${ }^{4}$, is neventheless almost identical with that found in trans- $\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{PEt}_{3}\right)_{2}\left[1.87(1)^{5}\right.$ or $\left.1.847(11) \AA{ }^{6}\right]$. In cis- $\mathrm{Pt}(\mathrm{CN})\left(\mathrm{C}_{2} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}{ }^{7}$, deviations from expected bond lengths have been explained in terms of extensive delocalisation, approaching the extreme $\mathrm{Pt}=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{N}$ situation. The bond between $\mathrm{C}(9)$ and the phenyl ring is virtually equal in length to that found in diphenylacetylene ${ }^{8}$, although the phenyl group is rotated some 45° out of the plane of the $\mathrm{Cu}-\mathrm{C}(8)-\mathrm{C}(9)$ fragment.

Formal electron counts give the copper a 16 and the iron an 18 -electron configuration. Although there is no direct interaction between the copper and iron atoms (separation $3.47 \AA$), the bond lengths suggest that extensive delocalisation involving both metal atoms, the acetylenic moiety, and possibly the phenyl group, has occurred. This feature, which probably involves back-bonding from filled copper orbitals into $C \equiv C \pi^{-}$ orbitals [analogous to that proposed for $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right)$ and many similar complexes],
must contribute towards the enhanced stability of this complex over that of the free acetylide, for example in photolytic and oxidative reactions.

ACKNOWLEDGEMENT

We thank Miss Sheila Lindsay for some preliminary measurements on the crystal.

REFERENCES

1 O.M. Abu Salah, M.I. Bruce, M.R. Churchill and S.A. Bezman, Chem. Commun., (1972) 858.
2 P.W.R. Corfield and H.M.M. Shearer, quoted in M.L.H. Green, Organometallic Compounds, Methuen, London (1968), Vol. 2, p. 275.
3 J.O. Glanville, J.M. Stewart and S.O. Grim, J. Organomeral. Chem, 7 (1967) P9.
4 M.R. Churchili, Perspectives Struct. Chem, 3 (1970) 91.
5 G.R. Davies, R.H.B. Mais and P.G. Owston, J. Chem. Soc. A, (1967) 1750.
6 W.A. Spofford, P.D. Garfagna and E.L. Amma, Inorg. Chem, 6 (1967) 1553 (see also Errata, p. 2677).
7 W.H. Baddley, C. Panattoni, G. Bandoli, D.A. Clemente and U. Belluco, J. Amer. Chem. Soc., 93 (1971) 5590.
8 J.M. Robertson and I. Woodward, Proc. Roy. Soc., 164A (1938) 436.

Erratum

J. Organometal. Chem., Vol. 42, No. 1 (August 16th, 1972)

Page C57
Line 5 should read:
$-\pi$-cyclopentadienyldicarbonylmangan ${ }^{5}$ und -pentacarbonyl-chrom,-molybdän und -wolfram ${ }^{6}$, während

